

Building (and evaluating) a Geostatic Model for the Purpose of 1P, 2P & 3P Reserves Estimation

> Steve Phillips Ryder Scott Company

Geological Models

Building Geological Models

• What kind of animal?

Goal of any reservoir model?

- Accurately describe <u>observed</u> rock and fluid properties from <u>data</u>.
- Reliably characterize <u>calculated</u> rock and fluid properties based on <u>interpretation.</u>
- Document best technical PIIP estimate, associated Key Volumetric Uncertainties (Static).
- Define fluid flow units, support history match and forecast (Dynamic).
- In reserves certifications: All of the above, <u>plus facilitate</u> <u>application of resource definitions</u>

3D Models: Strengths and Weaknesses

Data integrationMANY potential workflowsGeometrical constraintsMANY parameter optionsSpatial relationshipsProliferation of modelsGeostatisticsPotential to hide bad geology		Strengths	Weaknesses*
Geometrical constraintsMANY parameter optionsSpatial relationshipsProliferation of modelsGeostatisticsPotential to hide bad geology	-	Data integration	MANY potential workflows
Spatial relationshipsProliferation of modelsGeostatisticsPotential to hide bad geology		Geometrical constraints	MANY parameter options
Geostatistics Potential to hide bad geology		Spatial relationships	Proliferation of models
		Geostatistics	Potential to hide bad geology
Visualization Maps, Xsecs often ignored		Visualization	Maps, Xsecs often ignored
Scenario testing Documentation		Scenario testing	Documentation
Updates Updates		Updates	Updates

*Also true for traditional methods.

PRMS: Reservoirs and Projects

Discovered

A petroleum accumulation...a significant quantity of potentially recoverable hydrocarbons....

Discovered PIIP Quantity of petroleum that is estimated, as of a given date, to be contained in known accumulations before production....

Discovered Unrecoverable Discovered petroleum in-place ...not able to be recovered by the commercial and subcommercial projects envisioned.

Figure 1.1—Resources classification framework

Source: Petroleum Resources Management System, June, 2018

A 3D model must discriminate rock volumes contributing to <u>resources</u> and <u>reserves</u> from rock volumes containing only <u>unrecoverable</u> oil and gas or volumes beyond

scope of project

PRMS: Reservoirs and Projects

1.2.0.3 *The reservoir* (contains the petroleum accumulation): Key attributes include the types and quantities of PIIP and the fluid and rock properties that affect petroleum recovery.

Source: Petroleum Resources Management System, June, 2018

PRMS: Reservoirs and Projects

RYDER SCOTT

Example: Carbonate

Example: Carbonate

Remaining oil after 20 years of production with **17 Wells** Cum Oil Recovery: 8.2mmbo, **RF 9%**

Remaining oil after 20 years of production with **49 Wells** Cum Oil Recovery: 19.4mmbo **RF 21%**

Simulated recovery from Zones B and C depends on project effort.

1P-2P-3P Reserves from Zones B and C? With 49 wells?

Opinion: With caution. Observed response helpful.

Today's Message

RF = EUR / PIIP

- Recovery factor is the essential link between engineering and geoscience.
- Meaningful PIIP estimations must relate to EUR.
- EUR is defined by a project.
- Therefore, PIIP in a geomodel (or map) must be contained in a reservoir associated with a project.

RYDER SCOTT

3D Geological Models Potentially Excellent Tools for Application of Reserves Categories

4.1.2.2 The key uncertainties affecting in-place quantities include but are not limited to the following:

- A. Reservoir geometry, heterogeneity, compartmentalization, and trap limits that impact gross rock volume.
- B. Geological characteristics that define pore volume and petroleum saturation distribution.
- C. Position and nature of contacts or limits [e.g., lowest known hydrocarbons (LKH), oil/water contact, gas/water contact (GWC), gas/oil contact, and tilted contact gradient].
- D. Combinations of reservoir quality, fluid types, and contacts that control saturation distributions (vertically and horizontally).

Source: Petroleum Resources Management System, June, 2018

• <u>Heterogeneity</u>:

Example:

Est FWL

Discovery Area

Can operator assign 1P or 1C category to entire discovery area using Low Case scenario?

Seismic + Exploration Wells
Structure Delineated
Stacked Sands, Gas Pay
Estimated Free-Water Level

Low-Mid-High scenarios can potentially mis-align with project implementation Final project area

Recommendation Use best-technical case model for all reserves categories. Check conformance with data.

Apply appropriate contraints incrementally for compliance with definitions

Today's Message

Proved ≠ Pessimistic Possible ≠ Optimistic

- Proved volumes = "reasonably certain", not combined low-case assumptions.
- Probable and Possible volumes are not created by "stretching" the geology.
- 1P, 2P, 3P estimates rely on the same data and sound geological principles.
- Best-technical case models are generally most appropriate support of reserves volumes.
- Volume uncertainty managed by sound application of definitions (LKO, LKG, offset, barriers)

Words to the Wise

- Interpret(ation)(ed) 13x
- Chance 50x
- (un)Certain(ty)(ties) -119x
- Estimate(s) 231x
- (take) Care 5x
- Consistent(ly) 8x
- Reliable(ility) 9x
- Confidence 36x

Poor Control of Layering, Facies Proportions

Facies – Inconsistent Distribution

Structure, Faulting, Layering, Porosity

Structure, Layering, Porosity Model

Structure, Layering Ignores Seismic

Net/Gross Exaggerated Between Wells

Net/Gross Exaggerated Between Wells

Facies – Incorrect Statistical Distribution

Structural Model – Faults, Thickness Not QC'd

Water Saturation Model – Incorrect Methods

Today's Message

Technology + Detail ≠ Quality

3D models that violate principles of petroleum geology reduce confidence in reserves estimations.

Stakeholders depend on your work, but most will never see it.

Today's Message

Work with your eyes open

