SAMANTHA (SAM) HOLROYD

Chief Commercial Officer at ZeroSix

Samantha is an experienced energy industry executive with extensive corporate, financial, and technical leadership expertise. She has over 32 years of professional experience, including management and leadership roles in real asset operations, capital allocation and deployment, mergers and acquisitions, global consulting and advisory services, investment banking and private equity investment.

Sam is an independent board member of Chord Energy and Amerant Bank, serving on several committees including the corporate sustainability committee. She previously served on the board of SunTrust Investment Banking (now Truist), TPG (Sixth Street Partners), Denham Capital, EIG, and Shell.

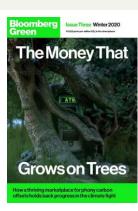
Sam holds a B.S. degree in Petroleum Engineering from the Colorado School of Mines.


Contact Me

Sam@zerosix.co

832-776-2042

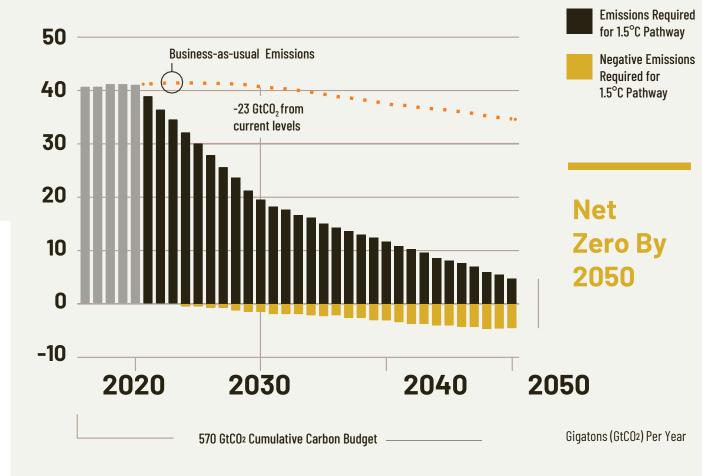
On the road to a net-zero world...


Carbon offsets are crucial

The world is looking for an additional 23
GtC02e emissions reduction per year......

The Voluntary Carbon Market (VCM) is critical in this transition

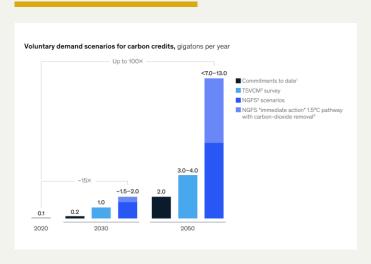
In the Voluntary Carbon Market we need:


- (1) more carbon credits generated by
- (2) higher quality projects that are
- (3) fully transparent

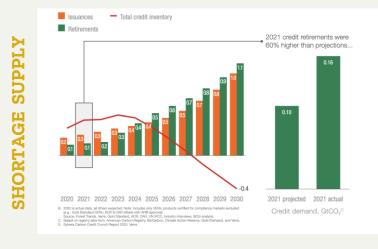
How a thriving marketplace for phony carbon offsets holds back progress in the climate fight.

—BLOOMBERG GREEN

Global Carbon Dioxide Emissions

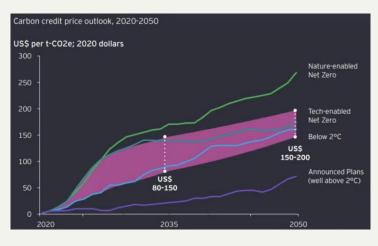


ZERØSIX


McKinsey GEP12021

Reference Case

The Voluntary Carbon Market is expected to surge



- More than 1/3 of large publicly traded companies have net-zero targets which cannot be met by avoidance and reduction alone
- Offsets through carbon credits are critical
- Conservative estimates are that demand for carbon credits will grow with a factor 15 towards 2030 and a factor 100 towards 2050

- The supply of new carbon credits cannot keep up with the demand and the tipping point has been reached in 2022
- There is relative inelasticity in supply since projects need time to develop

- The overall carbon price is expected to rise to 80-150 USD by 2035, up from 25 USD today
- a recent survey by BCG found that quality and locality of carbon credits are major differentiators for buyers

ZeroSix powered carbon credits are accurate, additional, permanent & transparent

ACCURATE

Based on SEC standard for calculating reserves, we can be certain about the CO₂ emissions avoided.

Two barrels of oil, 1 tCO₂e, 1 carbon credit

ADDITIONAL

When surfaced, the oil or gas would have been consumed with CO₂ emissions as a result.

PERMANENT

Once oil & gas is shut in, this is forever.

TRANSPARENT

Anyone can verify the provenance.


The ZeroSix blockchain-based solution creates independently verifiable digital carbon credits* which provenance can be tracked all the way back to individual wells

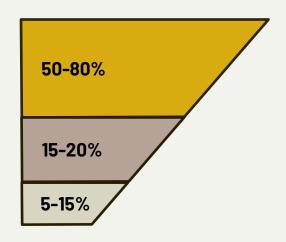
We take the most polluting wells

ZERØSIX

Apply the ZeroSix protocol and anchor proofs on a blockchain

Irreversibly shut in oil & gas

Convert the shut-in reserves into carbon credits*


Which are traded on the Voluntary Carbon Market

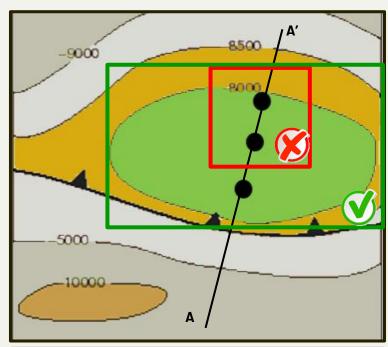
Fuel Cycle Emission Sources

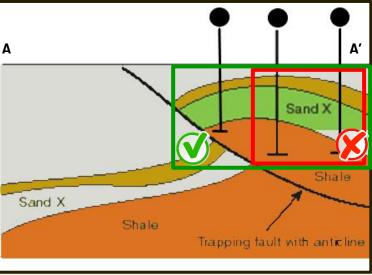
$$GHG_{Total} = GHG_{oil} + GHG_{refining} + GHG_{gas\ comb.} + GHG_{gas\ vent.} + GHG_{NGL}$$

- Scope 3 Downstream end-use combustion
 GHG_{oil}, GHG_{gas comb}, GHG_{NGL}
- Scope 1 & Scope 2 Upstream Operational
 GHG_{gas vent.}
- Scope 3 Refining GHG_{refining}

Fuel Cycle	Fuel Cycle Emissions	Scope 1	Scope 2	Scope 3
Downstream	65-80%			End-use of Produced Reserves
Refining	5-15%			Refining of Produced Oil
Upstream	15-20%	Fugitive Methane Emissions	Purchased Energy	Fugitive Methane During Transportation
		Flaring	Materials Aquired	Transportation and Distribution
		Venting		Purchased Goods and Services
		Onsite Combustion		Waste
		Operating Producing Facilites		Capital Goods

Eligible Reserve Volumes


Additionality – SEC PDP & PDNP Reserves


- Operational Mechanically capable of extraction
- Financial Economically Producible
- Regulatory No regulatory mandate for abandonment

Permanence

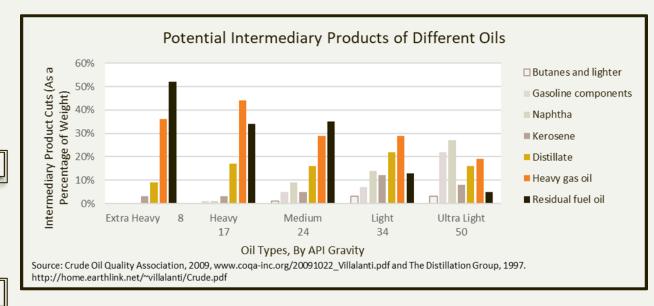
- Geologic No Reserve Migration or Production
- Operational No New Development
- Legal Mineral Right Moratorium

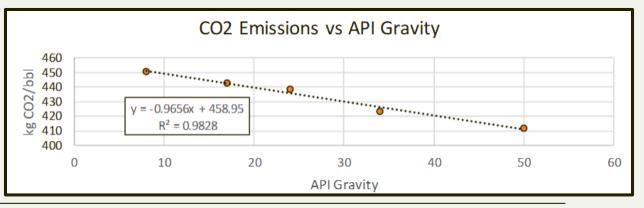
Carbon Content

Emission intensity tied to quality of product:

Crude Oil °API

$$GHG_{oil} = [-0.9656 * ^{\circ}API + 458.95] * V_{oil}$$

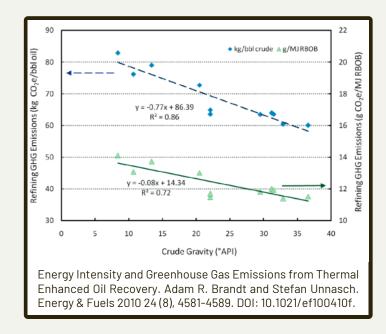

• Gas Heating Value Btu/scf


$$GHG_{gas\ comb.} = 52.91 * GHV * (1 - FE) * V_{gas}$$

• NGL C₂-C₅₊ Composition

$$GHG_{NGL} = [x_{ethane} * 170.1 + x_{propane} * 240.24 + x_{butane} * 280.14 + x_{pentane+} * 323.4]$$

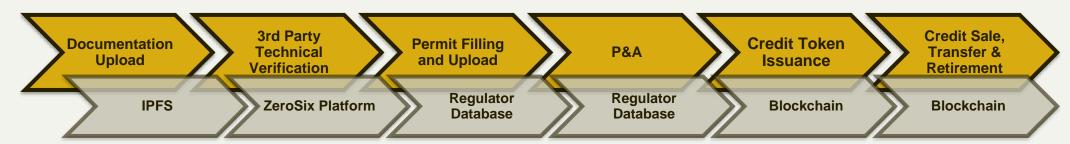
$$* V_{NGL}$$


Process Emissions

$$GHG_{vent} = 52.91 * GHV * GWP_{CH_4} * FE * V_{gas}$$

 Scope 3: Downstream refining of crude oil into intermediate and end-use products

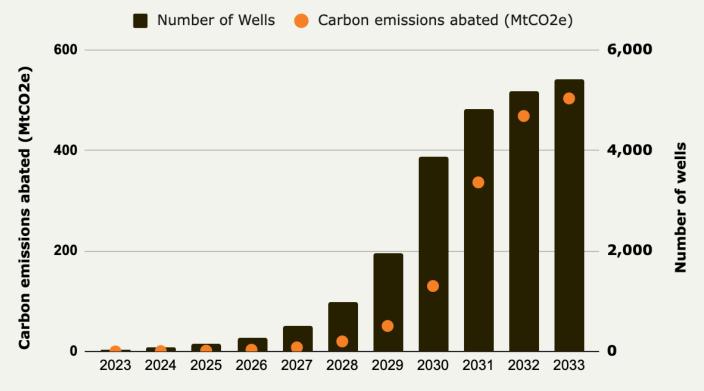
$$GHG_{refining} = [-0.77 * ^{\circ}API + 86.39] * V_{oil}$$



Digitized Transparency & Immutability

Regulated standards

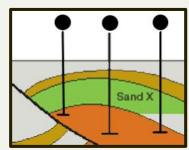
- SEC Reporting
- State Oil & Gas Regulators Permitting and Oversight: P&A, Land Reclamation, New Drill Permitting
- Technical Verifiers: State Engineer Licensing Boards and Accreditation Bodies Embedded in an Immutable Decentralized Digital Framework
- Protocol executed through smart contracts & results in equivalent ERC-1155 tokens
- All documentation stored on open InterPlanetary File System (IPFS)



ZeroSix Protocol can avoid 500 Megatonnes of CO2e emissions annually within 10 years

ZeroSix collaborates with operators and owners to make an INCREMENTAL impact to the Net Zero ambitions and absolute carbon reduction initiatives.

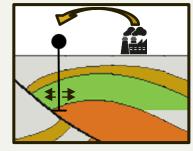
Number of Wells and Carbon emissions abated (MtCO2e)


But why stop there?

We start with oil & gas credits and protocols for methane emissions and carbon capture are next

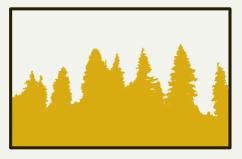
- Due to the underlying principles the ZeroSix solution can be used by any carbon project and carbon markets.
- We start with Oil and Gas emissions after which other natural resource extractions are a logical follow-on
- But also scientifically measurable nature based solutions are very suitable for independently verifiable carbon credits generated through the ZeroSix tool

Digitized Oil & Gas Protocols


P1: Reserve Retirement

P2: Orphaned Well Clean-Up

P3: CCS Conversion



Broader Digitized Carbon Solutions

Retirement of Resource Extraction

Scientific Nature
Based Solutions

2Q 2023

3Q 2023

4Q 2023

2024+

