HERMAN ACUÑA, P.E.

President, Member of Ryder Scott Board of Directors

Herman is experienced in management planning and decision-making processes amidst a climate of competition and risk. In addition to providing advice in the areas of economic analysis, strategic planning, negotiation strategies, contract evaluation and conflict resolution and coordinating large high-stake projects in the Caspian and Middle East regions, he is an expert in the evaluation of reserves and future income under a variety of fiscal terms and model contracts. Herman has also been involved with implementing Corporate Reserves Management Systems for several companies in his career.

Prior to joining Ryder Scott, he spent 10 years with Exxon Mobil. Herman has Bachelor's and Master's degrees with honors in Petroleum Engineering from the University of Tulsa. He is a registered engineer with the state of Texas.

Contact Me

Herman_Acuna@ryderscott.com

713-751-5527

www.ryderscott.com

CO2 STORAGE ANALYSIS AND PERMITTING

By Herman Acuña

CONTENT

- Introduction
- Storage Resources Classification Maturation
- Storage Resources Categorization Matrix
- Class VI Permit Checklist
- Risk Management

WHAT IS EXPECTED FROM AN EVALUATOR

- 1. A quantification of the storage resources
- 2. An assessment of the technical <u>uncertainty and maturity</u> associated with those resources reflected in the classification and categorization of the reserves and resources.
 - Quantities cannot be directly measured intrinsic uncertainty in the evaluations
- This <u>requires experience and judgement</u> in addition to the geologic and engineering technical analysis.
 - There is no silver bullet
- An evaluator provides two opinions:
 - A quantitative opinion (calculation)
 - A qualitative opinion (classification and categorization)

SPE-SRMS DEFINITIONS

- Major Classes:
 - Stored,
 - Capacity,
 - Contingent Storage Resources
 - Prospective Storage Resources
 - Inaccessible Storage Resources

CO2 STORAGE ANALYSIS AND PERMITTING WORKFLOW

SPE-SRMS PROJECT MATURATION

HOW TO DEVELOP A CRITERIA FOR STORAGE CATEGORIZATION

- Industry has ample experience with the SPE-PRMS; however the practical application of the SPE-SRMS is still being developed.
- With limited experience and industry practice, evidence-based judgement becomes more important.
- Development of a uncertainty attribute/variable matrix may assist in the categorization of storage resources.
- Define corporate guidelines on how the uncertainty/variable matrix can provide guidance for the categorization of storage resources.

Storage Quality	Seal Quality	CO ₂ Density and Migration
Monitoring & Corrective Actions	Upside	Data Quality
GY-CCUS-WP21-SRAM-v1.docx		
Numbe	urs to Count On Exports to	Truct

Ref.: STRATE

STORAGE QUALITY

Pore Volume wrt. Project Robustness	Large	Medium	Low
Reservoir Heterogeneity/Complexity	Low	Medium	High
Depth	4,000'-6,800'	2,500'-4,000' 6,800'-8,250'	<2,500' >8,250'
Pore Pressure	Hydrostatic or Lower		Overpressure
Thickness	>150 ft		< 50 ft
Avg. Porosity	>25%		<15%
Permeability	>500 mD		<10 mD
Injectivity	High kh	Medium kh	Low kh

Illustration of Effect of Pressure on CO₂. (Image courtesy of CO2CRC www.co2crc.com.au/imagelibrary/)

SEAL QUALITY

Sealing Layer(s) to prevent flow to economic/environmental receptors	Multiple	More than one	One/Uncertain
Continuity	Proven Continuity	Interpreted Continuity	Poorly defined Continuity
Seal Heterogeneity/Complexity	Low	Medium	High
Composition	High clay content		Silty, silt layers
Thickness	>300 ft		< 150 ft
Faults	No Faults / Stable Tectonics	Minor Throw	Large Throw through Seal
Wells	No drilling through seal	Low Well Count / Verified Integrity	High Well Count / unknown Integrity

CO2 DENSITY AND MIGRATION

CO ₂ Density	>450kg/m ³	450kg/m ³ - 300kg/m ³	300kg/m ³ >
CO ₂ Migration	Low Migration Risk		Moderate Migration Risk
Wells	No drilling through seal	Low Well Count / Verified Integrity	High Well Count / unknown Integrity

MONITORING & CORRECTIVE ACTIONS

Monitoring	Suitable Site & Program	Difficult Site for Monitoring
Intervention	Effective / Low Impact	Difficult / High Impact
Emergency	Effective / Low Impact	Difficult / High Impact

UPSIDE

Location	Suitable to other	Suitable to other	Remote
	sinks & sources	Sources	
Upside	Potential Hub Growth		Single Opportunity

DATA QUALITY

All Criteria	High Quality &	Adequate & Some	Low Quality &
	Good Coverage	Coverage Gaps	Sparse

- Seismic Interpretation area from 3D survey
- Exploration and Production wells are also displayed in black.
- Gridded surface and interpretation in colors
- Uncertainty and risk related to the extension and full closure of the reservoir area no cover in by the seismic

CLASS VI APPLICATION CHECKLIST

- General Information
- Geologic Narrative/Site Characterization
- Planned Well Operations
- Area of Review (AoR) and Corrective Action Plan
- Testing and Monitoring Plan
- Injection Well Plugging Plan
- Post Injection Site Care (PISC) and Site Closure Plan
- Emergency and Remedial Response Plan
- Injection Well Construction Plan
- Pre-Operational Testing
- Financial Responsibility Demonstration
- Proposed Stimulation Plan
- Injection Depth Waiver Request

UNDERGROUND SOURCES OF DRINKING WATER (USDW)

- Review analysis for the protection of underground sources of drinking water (USDWs)
- Area surrounding the storage project where USDWs may be endangered by the CO₂ project need to be delineated and analyzed (Area for Review or AOR)
- Protection of USDWs thus requires first an understanding of its characteristics within the AOR
 - Geology of the USDW
 - Hydrology of the USDW
- Protection measurements of the USDWs
 - Seals & impermeable rocks, pressures, hydrostatic equilibrium

RISK BASED DELINEATION FOR AREA OF REVIEW (AOR) - PROTECTION OF USDWS

- Risk based delineation of the Area of Review (AoR) Area endangered by vertical migration of CO₂
 - Minimum area should be the maximum area of the plume or the pressure front larger than original reservoir pressure
 - Examine pathways for migration to USDWs within the AoR that include legacy oil and gas wells, fractures and faults (including fault reactivation)
- Estimate the hydraulic heads generated within the AoR (hydraulic head maps)
 - As applicable, generate multiple scenarios based on reservoir properties uncertainties

RISK BASED DELINEATION FOR AREA OF REVIEW (AOR) - PROTECTION OF USDWS

- <u>Regulatory compliance is not feasible where storage reservoirs are over-pressured relative</u> to USDWs and thus hydrostatic equilibrium cannot be achieved.
 - Determine potential sustainable leakage rate from existing pressures heads prior to injection (baseline leakage flow)
 - Determine potential <u>incremental</u> sustainable leakage rate from the pressure front generated by injection
- Generate incremental leakage maps to delineate the risk based AoR and define monitoring, emergency and remedial response plans accordingly
 - Pressure buildup vs. incremental cumulative leakage
 - Incremental leakage maps
- Evaluate the monitoring, corrective and emergency plans commensurate with the findings during the risk based AoR reviews

POST INJECTION SITE RESTORATION AND FACILITIES ABANDONMENT

- Review the plans for site restoration and facilities abandonment
 - Well plugging and abandonment
 - Facilities decommissioning
 - Pipelines and flow lines abandonment
 - Abandonment of structures and buildings
 - Land reclamation

MONITORING AND CORRECTIVE ACTION PLAN

- Review testing and monitoring plans for operational parameters and performance
 - Analysis of injected CO₂
 - Soil gas baselining & sampling
 - Ground water baselining & sampling
 - Corrosion monitoring & prevention
 - Well integrity
 - Injectivity and pressure testing
 - Leak detection systems (surface & storage reservoir)
 - Subsurface CO₂ plume and pressure monitoring
- Review plan for periodical reassessment of the AOR and corrective action plans
 - Operational and post-operational

Monitoring Type	Equipment/Testing	Target Area
Analysis of CO2 Stream	Compositional and isotopic analysis of the CO ₂ stream	CO ₂ compressors at the capture facility
Wellsite Flowline Leak Detection System	H ₂ S detection stations, pressure gauges, and SCADA ¹ system	Wellsite flowline to wellhead
Surface Corrosion	Ultrasonic testing of tubing test sections installed at wellheads	Wellsite flowline to well infrastructure
Downhole Corrosion	PMIT ² and/or surface tubing inspection and USIT ³ (material wall thickness)	Downhole tubing and casing strings
Continuous Recording of Injection Pressure, Rate, and Volume	Flowmeters	Transmission line to well infrastructure
Well Annulus Pressure Between Tubing and Casing	Digital annular pressure gauges for continuous monitoring	Surface-to-reservoir (injection wells)
Internal and External Mechanical Integrity Testing	Tubing-casing annulus pressure testing (internal), USIT (internal and external) and temperature logs	Well infrastructure
Atmospheric	H ₂ S detection stations	Outside of wellhead enclosures
Near-Surface	Compositional and isotopic analysis of soil gas profile stations and dedicated Fox Hills ¹ monitoring wells	Vadose zone and lowest USDW
Direct Reservoir	Pulsed-neutron logs with temperature and pressure readings, pressure falloff testing, and surface pressure gauges	Storage reservoir and dissipation intervals
Indirect Reservoir	Time-lapse 2D seismic surveys and vertical seismic profiles (VSPs)	Entire storage complex

POST INJECTION MONITORING PLAN

- Review the plans for post injection monitoring which should be consistent in duration (minimum period) with plume stabilization simulation studies
 - Monitor change / permanence of stored volumes
 - CO₂ plume monitoring program
 - Soil ground sampling and monitoring
 - Well pressure measurements
 - Time lapse seismic
 - Reporting and submissions

EMERGENCY REMEDIAL RESPONSE PLAN

- Plan should consist of robust detection mechanisms and response actions
- Document the resources (USDWs) that may be impacted in an emergency
- Document infrastructure that may be impacted in an emergency (wellheads, transmission lines, compressors, etc.)
- Identify Potential Emergency Events & confirm proposed detection mechanisms
 - Surface facilities failure
 - Well integrity failure
 - Monitoring equipment failure
 - Subsurface containment of CO₂ failure
 - Natural events (earthquakes, etc.)
- Review adequacy of the emergency response actions for the emergency events
- Review training and awareness programs

OTHER CONTINGENCIES

- Verify that there are no pending contingences from:
 - Industrial activities
 - Extractive activities through wells or mining
 - Existing or planned infrastructure

THANK YOU

Herman_Acuna@ryderscott.com

Office Phone: +1-713-751-5527 Cell Phone: +1-832-788-6075

> 1100 Louisiana, Suite 4600 🍙 Houston, Texas 77002

> > www.ryderscott.com

Risk Assessment Feasibility Studies Economic Due Diligence United Nations Classification Framework Utilization and Sequestration Authenticate Greenhouse Gas Assertions Surface and Sub-Surface Integration

Numbers to Count On. Experts to Trust.