$N_P(1+\Delta P_R C_C)$

RYDER SCOTT COMPANY PETROLEUM CONSULTANTS

Houston Denver Calgary

SPE Young Professionals Are There Enough Barrels to Make This a Project? A Reservoir Engineer's Perspective Dean C. Rietz, P.E.

June 4, 2009

What Does it Take to "Make a Project"?

- SEC Perspective
 - NPV
- Internal Corporate Hurdles
 - IRR
 - NPV
 - ROI, DPI, etc.
 - Minimal payout time
- Outside Financing
 Additional Criteria

What do we need to look at to decide if a particular project is worthwhile?

What Do We Need to Look at to Decide if a Particular Project is Worthwhile?

Let's Look at 3 Different Projects:
PROJECT A ~ 10 MMBO
PROJECT B ~ 30 MMBO
PROJECT C ~ 300 MMBO

• Which is Best?

• Do We Need to Know More?

PROJECT A

- Rock Properties Very Good
- Fluid Properties Heavy Oil
- General Reservoir Characteristics
 - Shallow
 - Well known area
- Producing Concerns
 - May require thermal EOR

PROJECT B

- Rock Properties Very Good
- Fluid Properties Very Good
- General Reservoir Characteristics
 - Mid-range depth
 - Well known area
 - Demonstrated candidate for waterflood
- Producing Concerns
 - Water source

PROJECT C

- Rock Properties Low Permeability
- Fluid Properties Viscous
- General Reservoir Characteristics
 - Frontier area
 - Unknown continuity
- Producing Concerns
 - Deep Water
 - High angle/horizontal wells may be needed
 - Spacing development unknown
 - Too deep for thermal

So, are more barrels better?

Is Project C viable, what about A or B?

Let's look at more details:

"The more you detail, the more details you find need to be detailed."

Steve Claassen Owner – Tropical Sportscars

How do the various reservoir characteristics affect project performance and overall value?

Value **Not Just Barrels of Oil**

Reservoir Properties

RYDER SCOTT COMPANY PETROLEUM CONSULTANTS

ITEM

Rock Properties

 Low permeability/ poor quality

Fluid Properties

- High viscosity
- High saturation pressure

POTENTIAL IMPACT

- Slower rate of recovery (lower value)
- Need for high angle/horiz wells (higher cost)
- Higher residual oil saturation (lower RF)

- Slower rate of recovery (lower value)
- Lower API gravity (lower product price)
- May need EOR (higher dev cost)
- Two-phase region reached sooner (lower RF, increased facility costs)

General Reservoir Characteristics

<u>ITEM</u>

Deeper

Drive Mechanism

Frontier Area

Project Size

POTENTIAL IMPACT

- More costly to drill (higher dev costs)
- Increased completion costs (higher dev costs)
- Water drive good for oil, not so for gas
- Compaction increased energy, potentially reduced permeability
- Best practices Unknown (learning, costlier)
- Commerciality not proven (increased risk)
- Funding may be limited (increased borrowing cost)
- Economies of scale (increased efficiencies)
- Larger size may require
 - More partners potential delays
 - Outside funding increased costs

Project Comparison – Looking at the Details

RYDER SCOTT COMPANY PETROLEUM CONSULTANTS

- 1. OOIP
- 2. Ultimate Recovery
- 3. Recovery Factor
- 4. Production Forecast
- 5. Cash Flow (economic results)
- 6. Economic Hurdles (company & project specific)

Predicting Future Performance

- In some cases, direct analogs may be all that is needed to conduct an evaluation.
- In other cases, known historical performance data may suffice for a reasonable and reliable forecast (DCA).

Forecasting Oil Recovery

RYDER SCOTT COMPANY PETROLEUM CONSULTANTS

Available Production History

Decline Curve Analysis

• Experience, Analogs, Transient Test Data may help to determine the forecast portion.

No History / Complex Reservoirs

Full Field Models

Pattern Elements

14

Forecasting Oil Recovery - Simulation

15

Forecasting Oil Recovery - Simulation

16

Project A, B, & C Forecasts

RYDER SCOTT COMPANY PETROLEUM CONSULTANTS

Assuming we know all we need to in order to construct our reservoir models, we obtain the following forecasts:

Oil Rate Comparison

Cumulative Oil Comparison

Compare Recoveries and Project Costs

	OOIP <u>MMBO</u>	Ult Rec <u>MMBO</u>	RF <u>Percent</u>	Life <u>Yrs</u>	Dev Cost <u>MM\$</u>
A	10	3.0 (5.2)	30% (50%)	13.5	\$5.8 MM
В	28	7.0	25%	5	\$74 MM
С	280	42.1	15%	17	\$860 MM

Compare Project Value

	*NPV – <i>M</i> \$ <u>(Undisc)</u>	NPV – <i>M</i> \$ <u>10%</u>	IRR <u>%</u>	ROI <u>(Disc)</u>	Payout <u>Yrs</u>
A	\$ 52,916	\$ 26,165	52%	5.8	4.2
В	\$ 199,842	\$ 167,943	>100%	3.4	0.8
С	\$ 452,904	\$ 72,714	13%	1.1	5.8

* Forecasted volumes must be economically viable to be considered reserves (SEC: NPV > \$1).

Based on NPV at 10%, Project B is the most valuable at this time.

Note that all of the projects are economic, thus the choice strongly depends on various factors relating to the company's financial position.

The Inter-Relationships of Project Viability

RYDER SCOTT COMPANY PETROLEUM CONSULTANTS

- Reservoir engineering and evaluation requires significant interaction with other disciplines to fully understand the complete project.
- Even though many projects have common characteristics, they are all unique and must be evaluated individually.
- As with each step along the way following our barrel (from reservoir to the gas pump), many interrelated and interdependent facets must be evaluated.

Future Challenges

- Knowing how much time is the right amount to spend evaluating a project.
- Dealing with more complex reservoirs and more complex methods of analysis to answer the call for future energy demands.
 - "Easy Reservoirs" have already been found and exploited.
 - Maximizing ultimate recovery (Higher RFs) will require new approaches to reservoir management and overall project design.
- Transfer of experience from the large portion of our industry who will be retiring in the next 10 years.

EVERY PROJECT IS A CHALLENGE!

Questions?

Contact info: Dean_Rietz@RyderScott.com